

Presented by: Aleeta Dene, PE

APA

This learning program is registered with AIA CES for continuing professional education. As such, it does not include content that may be

AIA Continuing Education Provider

deemed or construed to be an approval or material or product. AIA continuing education credit has been reviewed and approved by AIA CES. Learners must complete the entire learning program to receive continuing education credit. AIA continuing education Learning Units earned upon completion of this course will be reported to AIA CES for AIA members. Certificates of completion for both AIA members and non-AIA members are available upon request.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Diaphragms play a vital role in a building's lateral load path. Whether that lateral load is from seismic or wind, the diaphragm is responsible for distributing that lateral load to the shear walls. This session provides guidance on the proper design of engineered wood diaphragm and subdiaphragm systems. Participants will learn best practices as they are guided through a simple design example.

APA

Learning Objectives

- 1. Understand the importance of the diaphragm in the overall load path of a wood building.
- 2. Identify the proper sheathing and nailing patterns for a wood diaphragm.
- 3. Discuss how design choices affect the overall diaphragm deflection.
- 4. Distinguish the benefits and drawbacks of using a subdiaphragm.

APA

Lateral Load Path Wood Shear Wall and Diaphragms Design Shear Values • Function of fastener size and spacing, panel thickness and the specific gravity of the framing materials • Values in tables in ANSI/AWC SDPWS-21 • Alternately, capacities can be calculated by principles of mechanics

APA

Lateral Load Path

2021 IBC

Shear Wall and Diaphragm Tables

Tables removed from Ch 23 except for staples

 ANSI/AWC SDPWS-21 lists nominal values – require adjusting for ASD or LRFD

APA

	_		_			_					
Dia	phi	rag	m S	She	ath	inq					
	•	U				Ŭ					
PEPEOP	MANCE	CATEGO		NOMIN		NECC IL	A BY CD		NG.		
(The pred	iominant	Performa	nce Cate	gory for e	och spon	rating is	nighlighte	d in bold	type.)		
Span					Perform	nance C	ategory				
Rating	3/8	7/16	15/32	1/2	19/32	5/8	23/32	3/4	7/8	1	1-1/8
Sheathin	g										
W24	0.375	0.437	0.469								
24/0	0.375	0.437	0.469	0.500							
24/16		0.437	0.469	0.500							
32/16			0.469	0.500	0.594	0.625					
40/20					0.594	0.625	0.719	0.750			
48/24							0.719	0.750	0.875		

Dia	anhr	adı	m	Nai	li	n	a																		
	~P~	-9			••	•••	J																		
Table 4.2	A Nominal I	nit She	or Cana	cities for	She	athe	d W	lood	Fra	me	Dian	hra	d'ma												
			Blocked	Wood Binative	ul Pas	el Dia	shing	100,123	M	_		_													
					140		in lar	-	-	larita (i	-		-	-		d tec									
	Company And Mart	Beating .	-	Manager State of			-	1	1.14.1	and M I	a parte	212	anne T		1										
State	Langer (M.) a Block diameter (M.) a Head	Training .	Facel	Adjusting Panel		And Rowing Inc. at other paral ariges (Sease 1.8.3, A.R.																			
0.37755	attender (m.)	Stating L.	Budaya L. (M)	Studing L.	Budding L. (H)	Budding &	Budding &	Budding L.	Budding &	Budding &	843	Beautates (He)	ñ	-10	hi.	à		ini.	à		-	à.		1	
		1.118	414	1	101	15	11	100	10	13	1058	-11	10	1113	20	1									
-	M.	1.08			18	14	- 12	194	-	7.8	Later		10	1	21	-									
	100	1.15	18.62	1	12	10		1728	18	u	11166	-	10	100	21	2									
	- Ortificitie		418	2	- 01	- 13	44	431	80	7.8	80	10	9.2	1000	31	0									
	Overtixeese	1.98	18	1	100	.0	11	100	10	- 44	1000	40	80	118	-										
		-		1	- 11	15	-11	- 22	-11-	7.8	1.845	13	9.5	1505	10	0 8									
Destine and				1	200	18	88	100	- 18	- 8.8	18/16	11	8.0	1715	- 14	2									
brgs-Foot	12-12-18 + 0.191 + 0.2910	144	.794		1.5	- 11			- 10	- 88	100	- 22	- 11	1800	11	19									
				i	Lini.	18		100			1485		78	188		11									
	10.196	140	1610	1	100	- 21	14	1000	-14		1000	17	- 14 U	1834	14	18 16									
	(Frit.160,5212)		14/12	2	810	21	- 16	1190	12	. 84	1780	18	tr	2041	28	17									

18

