

The APA – The Engineered Wood Association is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES), Provider #G023. Credit(s) earned on completion of

this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

APA

2

.

Disclaimer

The information contained herein is based on APA – The Engineered Wood Association's continuing programs of laboratory testing, product research and comprehensive field experience. No warranties, express or implied, including as to fitness for a particular propee, are made regarding this publication. Neither APA nor its members shall be liable, or assume any legal liability or responsibility, for damages, direct or indirect, arising from the use, application of, and/or reference to opinions, findings, conclusions or recommendations included in this presentation. Consult your iccal jurisdication or design professional to assure compliance with code, construction and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.

© Copyright. 2024. APA – The Engineered Wood Association. All rights reserved. No part of this presentation may be reproduced, distributed, transmitted, displayed, or published without prior written permission of APA. No part of this handout may be entered, input, or used to teach or train a machine learning or artificial intelligence tool or system. Presentation recorded 00/00/0000.

- Identify performance implications of wall bracing in singlefamily homes.
 List the benefits of early wall bracing design for enhancing
- window layout and material efficiency.
- 3. Be able to identify when to use prescriptive wall bracing, engineering, or a combination of both for code compliance.
- Discuss how the APA Wall Bracing Calculator output streamlines the plan review process and optimal constructability during the building plan implementation.

APA

Agenda

7

Review a load path through a wood structure while covering a portion of the IRC Wall Bracing section.

Describe the key benefits to early wall bracing design.

Introduction to APA's Wall Bracing Calculator with a WBC entry example.

will.	200
	5
	APA

_

APA					The lea	sing resource for	information about engineered	wood produ
			TECHN	CAL RESEARCH MA	NUFACTURER DIRECTORY	CONTACT	giller nearch hores	م ر
PRODUCTS RESC	URCE LIBRARY	DESIGN & BUILD	ABOUT US	FEATURED SITES	MEMBERS ONLY			МҮ АРИ
RESIDENTIAL BUILDING		COMMERCIAL BUILDIN					DMEOWNER	
Floors		APA Designers Circle Bridges		Build A Better Hor Force Transfer An	ne wind Onenings	Moisture Miti	gation to	
Underlayment/Subfloor		Churches		Energy Efficiency	Humicane Shutter Designs			
Raised Wood Floors Premium Floor Assemt	wy.	Hotels & Resorts Low-Rise Construction		Green Building Wind. Weather & Seismic	INDUSTRIAL APPLICATIONS			
High Mosture and Wo Walls Fully Sheathed Walls Advanced Framing Wall Bracing Wall Bracing Calculato Roots Notes	d Flooring	Mid-Rise Construction Panelized Roofs Retrollts and Remodels Schools Shear Walls & Diaphrage Transportation Structures	•	Fire-Rated Systen Noise-Rated Syst Case Studies	ns inns	Performance	Parets com	

Wall Bracing

R602.10 Wall Bracing "Where a building, or portion thereof, does not comply with one or more of the bracing requirements in this section, those portions shall be designed and constructed in accordance with Section R301.1."

19

Bracing: Required Length Adjustments to the required bracing length for wind forces: Adjust required bracing length using Table R602.10.3(2) Wind exposure category adjustment Roof eave to ridge height adjustment Hold-down, interior finish, GB fastener Nos. of BWLs adjustment Wall height adjustment Aadjustments 13 Only required when adjustment is greater than 1.0 APA Table R602.10.3(2)

26

APA

Table R602.10.3(2)

C	Jing. Re	quireu	Length	
n x	ent Factor posure Cat	— egory, Mean	Roof Height	
	· · · ·			
	Number of	Exposure/Height Factor		
	Stories	Exposure B	Exposure C	Exposure
	1	1.0	1.2	1.5
	2	1.0	1.3	1.6
ſ	3	1.0	1.4	1.7

Bracing: Required Length Adjustment Factor — Number of Braced Wall Lines (Footnote c) Number of Braced Wall Lines Adjustment Factor 2 1.00 3 1.30 4 1.45 <u>></u> 5 1.60 Table R602.10.3(2) Footnote c allows the adjustment factor to be 1.0 when the braced wall line spacing on exterior lines neglects the interior lines. For example—when interior BWLs are only need for seismic bracing or when they are only needed to support BWLs in the story above. - Braced wall line x - Braced wall line spacing APA Table R602.10.3(2)

Bracing: Requi	ired Length	
Adjustment Factor — Wind Continued		
Adjustment Factor	Bracing Method	Adjustment Factor
Additional 800-pound hold-down at each BWP for top story only	DWB, WSP, SFB, PBS, PCP, and HPS	0.8
Interior finish	DWB, WSP, SFB, PBS, PCP, HPS, CS-WSP, CS-G, and CS-SFB	1.4
Gypsum board fastening—4" o.c. at all panel edges, blocked horizontal joints	GB	0.7
Horizontal blocking	WSP, CS-WSP	2.0

Bracing: Required Length Bracing Requirements Based on Wind Speed – Adjustment factors Bracing adjustment factors are in Table R602.10.3(2) Wind exposure category Eave-to-ridge height Wall height Wall height Womber of braced wall lines 800-pound hold-down on top story Application of interior gypsum board finish Horizontal blocking

44

Builder Benefits

Informed framing crews can properly install wall sheathing and save not only material, but time as well.

л	7
ட	
-	

The code defines a braced wall panel (BWP) as a full-height section of a braced wall line (BWL) with no vertical or horizontal offsets.

The IRC defines a BWL as a series of BWPs in a single story.

APA

Important Basics

Braced Wall Lines R602.10.1

- Straight
- Run in each plan direction
- Required on every floor
- 4' offset each side of BWL allowed
- BWL not required to align with physical walls
- Angled walls allowed

APA

_				
-				
_				
_				
-				
-				

_				

		_

