WA Enterprises Structural Glued Laminated Timber WA Enterprises LTD dba Western Archrib

PR-L350(C) Issued July 9, 2024

Products: WA Enterprises Structural Glued Laminated Timber

WA Enterprises LTD dba Western Archrib, 4315 92nd Avenue, Edmonton, Alberta, Canada T6B 3M7

(780) 465-9711

www.westernarchrib.com

1. Basis of the product report:

- 2020 National Building Code of Canada (NBC): Clause 1.2.1.1 of Division A and Clauses 4.1, 4.3.1, and 9.23 of Division B
- CSA O86-19 Engineering Design in Wood
- CSA O122-16 Structural Glued Laminated Timber recognized in CSA O86-19
- CSA O177-06 (R2015) Qualification Code for Manufacturers of Structural Glued-Laminated Timber recognized in CSA O86-19
- Qualification test data

2. Product description:

WA Enterprises glulam products are manufactured with Douglas Fir-Larch and Spruce-Lodgepole Pine-Jack Pine lumber in accordance with CSA O122. These layup combinations are recognized in CSA O86. WA Enterprises glulam products are used as beams, headers, rafters, purlins, and columns, and are manufactured in nominal widths up to 800 mm (31-1/2 inches), depths up to 1,900 mm (75 inches), and lengths up to 45.7 m (150 feet).

3. Design properties:

Limit states design properties for WA Enterprises glulam products are listed in Table 1. The maximum design loads for WA Enterprises glulam products shall be in accordance with the recommendations provided by the manufacturer or shall be determined based on the design properties listed in Table 1, as appropriate.

4. Product installation:

WA Enterprises glulam products shall be installed in accordance with the recommendations provided by the manufacturer and APA Construction Guide: *Glulam Connection Details*, Form T300 (www.apawood.org/resource-library). Permissible field notching and drilling of WA Enterprises glulam beams shall be in accordance with the recommendations provided by the manufacturer and APA Technical Notes: *Field Notching and Drilling of Glued Laminated Timber Beams*, Form S560, and *Effect of Large Diameter Horizontal Holes on the Bending and Shear Properties of Structural Glued Laminated Timber*, Form V700 (see link above). Permissible field notching and drilling of WA Enterprises columns shall be in accordance with the recommendations provided by the manufacturer.

5. Fire-rated assemblies:

Fire-rated assemblies shall be constructed in accordance with the recommendations provided by the manufacturer. Procedures specified in Annex B of the 2019 CSA O86 may be considered in designing glulams exposed to fire up to 2 hours when permitted by the authority having jurisdiction. The fire-resistance rating shall be evaluated in accordance with Appendix D-2.11 of the 2020 NBC.

Limitations:

- a) WA Enterprises glulam products shall be designed in accordance with the code using the engineering properties specified in this report.
- WA Enterprises glulam products shall meet the dimensions specified in CSA O122 and CSA O86.
- c) WA Enterprises glulam products shall be manufactured in accordance with layup combinations specified in CSA O122, *Structural Glued-Laminated Timber*.
- d) WA Enterprises glulam products listed in this report are produced at WA Enterprises' facilities in Boissevain, Manitoba and Edmonton, Alberta, Canada, under a quality assurance program audited by APA.
- e) This report is subject to re-examination in one year.

7. Identification:

WA Enterprises glulam products described in this report is identified by a label bearing the manufacturer's name (WA Enterprises) and/or trademark, the APA assigned plant number (1142 for the Boissevain plant and 1143 for the Edmonton plant), the APA logo, the layup combination symbol, the report number PR-L350 or PR-L350C, and a means of identifying the date of manufacture.

Table 1. Specified Strengths and modulus of elasticity (MPa) and Relative Density for WA Enterprises Glulam^(1,2,3)

Enterprises Giulam (1-3)											
Stress grade	24f-E	24f-EX	20f-E	20f-EX	18t-E	16c-E	20f-E	20f-EX	14t-E	12c-E	Wet- Use Factor
Species	Douglas Fir-Larch						Spruce-Lodgepole Pine-Jack Pine				
Bending moment (pos.), f _b ⁽⁴⁾	30.6	30.6	25.6	25.6	24.3	14.0	25.6	25.6	24.3	9.8	0.80
Bending moment (neg.), fb(4)	23.0	30.6	19.2	25.6	24.3	14.0	19.2	25.6	24.3	9.8	0.80
Longitudinal shear, f _v ⁽⁵⁾	2.0	2.0	2.0	2.0	2.0	2.0	1.75	1.75	1.75	1.75	0.87
Compression parallel, fc	30.2	30.2	30.2	30.2	30.2	30.2	25.2	25.2	25.2	25.2	0.75
Compression parallel combined with bending, f _{cb}	30.2	30.2	30.2	30.2	30.2	30.2	25.2	25.2	25.2	25.2	0.75
Compression perpendicular, f _{cp} ⁽⁶⁾											
Compression face bearing	7.0	7.0	7.0	7.0	7.0	7.0	5.8	5.8	5.8	5.8	0.67
Tension face bearing	7.0	7.0	7.0	7.0	7.0	7.0	5.8	5.8	5.8	5.8	0.67
Tension net section, ftn	20.4	20.4	20.4	20.4	23.0	20.4	17.0	17.0	17.9	17.0	0.75
Tension gross section, ftg	15.3	15.3	15.3	15.3	17.9	15.3	12.7	12.7	13.4	12.7	0.75
Tension perpendicular to grain, f_{tp}	0.83	0.83	0.83	0.83	0.83	0.83	0.51	0.51	0.51	0.51	0.85
Modulus of elasticity, E	12,800	12,800	12,400	12,400	13,800	12,400	10,300	10,300	10,700	9,700	0.90
Mean oven-dry relative density (G)	0.49	0.49	0.49	0.49	0.49	0.49	0.42	0.42	0.42	0.42	-

⁽¹⁾ The tabulated design values for bending properties are intended for members stressed in bending due to loads applied perpendicular to the wide faces of the laminations. Members stressed in bending due to loads applied parallel to the wide faces of the laminations shall be designed in accordance with Clause 7.5.3 of CSA O86.

⁽²⁾ Design of glulam members shall be in accordance with CSA O86, Engineering Design in Wood (Limit States Design).

 ⁽³⁾ The tabulated design values are for standard-term load duration and dry conditions of use. For other load durations, see applicable design code. For wet conditions of use, multiply the tabulated values by the wet-use factors shown in the rightmost column of the table.
(4) In calculating the size factor for bending, K_{Zbg}, the beam width, b, must be taken as the full member width (mm).

⁽⁵⁾ In calculating the factored fracture shear resistance at a notch on the tension side at a support, Fr, the effective lamination width, baff, must be taken as the beam width (mm).

⁽⁶⁾ In calculating the size factor for bearing, Kzcp, the beam width, b, must be taken as the full member width (mm).

APA – The Engineered Wood Association is an approved national standards developer accredited by American National Standards Institute (ANSI). APA publishes ANSI standards and Voluntary Product Standards for wood structural panels and engineered wood products. APA is an accredited certification body under ISO/IEC 17065 by Standards Council of Canada (SCC), an accredited inspection agency under ISO/IEC 17020 by ANSI National Accreditation Board (ANAB), and an accredited testing organization under ISO/IEC 17025 by ANAB. APA is also an approved Product Certification Agency, Testing Laboratory, Quality Assurance Entity, Validation Entity, and Product Evaluation Entity by the State of Florida, and an approved testing laboratory by City of Los Angeles.

APA - THE ENGINEERED WOOD ASSOCIATION

HEADQUARTERS

7011 So. 19th St. • Tacoma, Washington 98466 Phone: (253) 565-6600 • Fax: (253) 565-7265 • Internet Address: <u>www.apawood.org</u>

PRODUCT SUPPORT HELP DESK

(253) 620-7400 • E-mail Address: help@apawood.org

DISCLAIMER

APA Product Report® is a trademark of *APA – The Engineered Wood Association*, Tacoma, Washington. The information contained herein is based on the product evaluation in accordance with the references noted in this report. No warranties, express or implied, including as to fitness for a particular purpose, are made regarding this report. Neither APA nor its members shall be liable, or assume any legal liability or responsibility, for damages, direct or indirect, arising from the use, application of, and/or reference to opinions, findings, conclusions or recommendations included in this report. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements. Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used, it cannot accept responsibility for product performance or designs as actually constructed.